Doktorandský študijný program Aplikovaná matematika (v skratke AM alebo APM) na FMFI odráža potrebu praxe na dostatok absolventov ovládajúcich nielen základné matematické disciplíny, ale aj schopných aplikovať matematické poznatky v iných vedách ako napr. fyzika, biomatematika, teoretická ekonómia a financie. Tieto aplikované odbory vyžadujú prehlbovanie a rozširovanie používaných matematických metód a vytváranie nových kvalitných modelov. Zároveň vyžadujú zvládnutie moderných softvérových prostriedkov na realizáciu vedecko-technických výpočtov. Študijný odbor doktorandského štúdia Aplikovaná matematika má ambíciu skĺbiť osvojovanie si hlbokých matematických poznatkov z oblasti matematickej analýzy, štatistiky a matematického modelovania so získavaním znalostí z hraničných vedných odborov.
Študijná časťŤažiskom študijnej časti je individuálne štúdium literatúry určenej školiteľom. Súčasťou štúdia môže byť aj úspešné absolvovanie prednášok z vybraných predmetov. Ďalšou súčasťou štúdia je aktívna účasť na pravidelných vedeckých seminároch, ktorých výber pre doktoranda určuje školiteľ. Zároveň súčasťou hodnotenia doktoranda môže byť jeho/jej účasť na domácich a medzinárodných konferenciách a letných/zimných školách, prednesenie príspevku na konferencii a publikácia článku v recenzovanom časopise. V rámci študijnej časti programu študent musí absolvovať doktorandské prednášky v minimálne kreditovej výmere 40 kreditov, nie však viac ako 70 kreditov.
Predmety Teória pravdepodobnosti, Náhodné dynamické systémy, Nelineárne štatistické modely a Simulačné metódy sú vhodné pre doktorandov, ktorí sa zameriavajú na teóriu pravdepodobnosti a matematickú štatistiku.
Absolvovaním predmetov Asymptotické metódy, Modely prúdenia tekutín, Biomatematika a Základy matematického modelovania v empirických vedách získa študent poznatky z moderných metód matematického modelovania a analýzy modelov v prírodných a fyzikálnych vedách.
Pre doktorandov zameraných na finančnú matematiku a matematickú ekonómiu sa odporúča absolvovať predmety Analýza modelov finančnej matematiky, Pravdepodobnostné modelovanie v poisťovníctve a Vybrané partie z finančnej matematiky.
Absolvovanie predmetov Metódy vnútorného bodu v lineárnom programovaní a Moderné metódy konvexnej optimalizácie je doporučené pre doktorandov so zameraním na moderné metódy optimalizácie.
Vedecká časťNáplňou vedeckej časti je vypracovanie dizertačnej práce. Práca by mala dokladať doktorandovu pripravenosť vedecky pracovať tým, že prinesie buď originálny matematický výsledok alebo originálnu aplikáciu matematickej teórie vo vybranej vednej disciplíne ako napr. fyzika, biomatematika, teoretická ekonómia a matematická teória financií. Výsledok práce by mal byť publikovateľný v recenzovanom vedeckom časopise z oblasti matematiky alebo predmetnej oblasti jej aplikácie. Študent je podporovaný, aby so svojimi vedeckými výsledkami vystúpil na domácej alebo medzinárodnej konferencii. Všetky tieto činnosti sú v študijnom programe riadne kreditované.
Doktorand v dennej forme štúdia s trvalým pobytom v členskom štáte EÚ má počas štandardnej doby trvania štúdia nárok na štipendium, ktoré začne poberať po zápise na štúdium. Výšky mesačného štipendia k 1. septembru 2023 sú určené podľa platných právnych predpisov a nariadení Vlády SR:
Doktorandské štúdium je ekvivalent práce na plný úväzok a vo väčšine prípadov nie je vhodné ani možné absolvovať denné doktorandské štúdium v kombinácii s iným pracovným úväzkom. V prípade štúdia popri zamestnaní je vhodné voliť externú formu štúdia. Povinnosti doktorandov zahŕňajú podiel na pedagogickej činnosti (vedenie cvičení, opravovanie písomných prác a pod.) podľa rozvrhu určeného na príslušnej katedre.
Ďalšie informácie:
Martin Hurban - vedúci tímu pre Data Science v ČSOB; absolvent EFM, absolvent doktorandského štúdia Aplikovanej matematiky.
„V roku 2015 som absolvoval odbor Ekonomickej finančnej matematiky na FMFI UK.
Počas štúdia na EFM som získal algoritmické myslenie a kvalitný matematický základ, čo umožňuje veľmi rýchly vstup do širokého spektra vedných oblastí.
Budovanie tohto základu ma primälo k tomu, aby som sa naučil systematicky učiť sa, čo je jedna z najužitočnejší vlastností v dnešnej dobe.
Štúdiom ma sprevádzali stimulujúci vyučujúci a motivujúci kolektív spolužiakov, ktorý mi pomáhal napredovať v rozvíjaní analytických, ale aj komunikačných zručností.
Po skončení magisterského programu som pokračoval v doktorandskom programe Aplikovaná matematika, kde som sa zaoberal modelovaním tuhnutia kvapalín.
Po doktorandskom štúdiu som sa rozhodol zmeniť smer môjho pôsobenia a nastúpil som na pozíciu data scientist v ČSOB, kde som sa venoval vytváraniu modelov predikujúcich správanie sa zákazníkov,
ako aj vývoju algoritmov pre spracovanie geografických dát.
Následne som sa venoval spracovaniu textov a vývoju virtuálnych asistentov v KBC (ide o materskú spoločnosť ČSOB banky).
Štúdium doktorandského programu Aplikovaná matematika mi poskytlo široké možnosti uplatnenia a dovolilo mi vybrať si moju oblasť záujmu.”